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Abstract

This paper gives a short expository overview of local cohomology with an emphasis on vanishing
theorems. A particular application to minimal generation of ideals up to radical is discussed.

Introduction

One often hopes to answer mathematical questions of existence (does this object or map possess a desired
property?) without the necessity of construction. For it is undoubtedly advantageous to know whether a
map possesses some extension or lift before making futile attempts at constructing one, or to know that
a module is not finitely presented before we ever consider a possible finite presentation. Homological
algebra offers a surprisingly useful tool to answer such questions by the way of cohomology: one can
often define a sequence of cohomology classes whose elements, upon examination, possess the answer to
the existence question initially posed. Most frequently such cohomology classes are defined to measure
obstructions to answering the question: if the cohomology groups are all zero, we typically conclude that
yes, the object or map possesses the desired property. On the other hand, if some cohomology group is
nonzero, we obtain useful information about where and how exactly the property fails.

The functor ExtR(M,−) is a prime example of using cohomology to measure obstructions, and is
especially important in the context of local cohomology. GivenR-modulesA andB, we ask whether there
exists an extension of A by B, that is, an R-module C that fits into a short exact sequence of R-modules

0 → B → C → A → 0.

Such an extension always exists by taking C = B ⊕ A and using the canonical maps. It turns out that
the elements of the first Ext group Ext1R(A,B) are in bijection with equivalence classes of extensions of
A by B, with the trivial extension A ⊕ B corresponding to the zero element of Ext1R(A,B). One then
notices that the question “is A a projective R-module?” is equivalent to checking that Ext1R(A,B) = 0 for
all R-modules B, for if

0 → B → C → A → 0

is exact then A is projective if and only if the sequence splits. Hence one obtains an answer to a purely
algebraic question by appealing to cohomology. On a similar note, if one already knows thatA is projective,
then knowing thatExt1R(A,B) = 0 for allR-modulesB allows us to easily computeExt groups of closely
related modules.

Tomotivate our foray into local cohomologywe consider a questionwhich served as part of Grothendieck’s
inspiration for introducing the construction in 1961 ([1]). Given a set of generators for a finitely generated
ideal, it is natural to ask whether the cardinality of this set is minimal or if it is possible to yield the ideal
with fewer generators. Alternatively one can pose this question “up to radical”: given a ringR and an ideal
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J , what is the least number of elements x1, . . . , xn of J such that
√

(x1, . . . , xn) = J? In a purely con-
structive argument, we would need to try every possible combination of elements to definitively conclude
that J cannot be given with fewer generators up to radical. Hence the appeal of an obstruction which
provides necessary lower bounds for this number of generators becomes clear, and Grothendieck’s local
cohomology is precisely the tool which accomplishes this.

In section 1we provide the definition of local cohomology in terms ofExt. Section 2 provides important
consequences of this definition, focusing on vanishing theorems and theorems of uniqueness. In section 3
we compute some local cohomology groups of polynomial rings by making use of the vanishing theorems.
The final section returns to the minimal radical generation question from the algebro-geometric point of
view, discussing how local cohomology is used to solve this problem.

1 Defining Local Cohomology in Terms of Ext

Let R be a Noetherian ring, M an R-module, I ≤ R an ideal. To define the ith local cohomology module
ofM with support in I we must first rigorously define the Ext functor and the corresponding Ext groups.

Definition 1. Let R be a ring and N an R-module. A projective resolution of N is an exact sequence

· · · → P1 → P0 → N → 0

where each Pi is a projective R-module.

We remark that everyR-module has a projective resolution via the following recipe: Take a surjective
map from a projective module P0 to N , which exists by taking P0 to be the free group of which N is a
quotient. Consider the kernelK0. There exists a surjective map from a projective module P1 toK0, so one
obtains a map P1 → P0 by composing P1 ↠ K0 ↪−→ P0. The image of this map is precisely the kernel of
P0 → N , yielding exactness at P0. LettingK1 = ker(P1 → K0), we proceed inductively indefinitely.

We truncate this resolution by replacingN with 0 to get a new sequenceP• = · · · d2−→ P1
d1−→ P0

d0−→ 0,
which is no longer exact but which remains a chain complex (im di ⊆ ker di−1 for all i ≥ 1). Given another
R-moduleM , wemay apply toP• the left exact contravariant functorHomR(−,M), obtaining the cochain
complex

0 → HomR(P0,M)
d1∗−−→ HomR(P1,M)

d2∗−−→ · · · (1)

which often fails to be exact but which satisfies im di∗ ⊆ ker di+1∗ . The ith Ext group ExtiR(N,M) is the
ith cohomology of (1):

Definition 2. For the cochain complex in (1),

ExtiR(N,M) := ker di+1∗/ im di∗ .

Thus Exti measures failure of exactness of (1) at the ith position.

The definition of ExtiR(N,M) appears to rely heavily on the choice of projective resolution for N , so
it is natural to ask whether ExtiR(N,M) is well-defined. Fortunately, given another projective resolution
Q• forN , the process outlined above yields isomorphic Ext groups to those already constructed (see [7]).

Remark 1. If we view HomR(−,M) as a right exact functor ModR → Abop instead of a contravariant
left exact functor, then ExtiR(−,M) as defined above is the ith left derived functor of HomR(−,M). Al-
ternatively it is possible (and often more useful) to take ExtiR(N,−) as the ith right derived functor of
HomR(N,−). Hence ExtiR(N,M) is computed by taking an injective resolution

0 → M → I0 → I1 → · · ·

2



ofM , truncating it to I•, and looking at the ith cohomology of

0 → HomR(N, I0) → HomR(N, I1) → · · ·

For a proof that these two definitions are equivalent, we refer the reader to [7]. Each definition has its
advantages: while injective resolutions tend to make for simpler proofs, projective resolutions are typically
easier to construct. Hereon we use whichever is most convenient for the task at hand.

Proposition 1. ExtiR(−,M) is a contravariant functor fromModR to Ab.

Proof. We have seen that ExtiR(−,M) maps R-modules to abelian groups. It remains to show that if f :
N → N ′ is anR-module homomorphism, there is an induced group homomorphism f̃i : Ext

i
R(N

′,M) →
ExtiR(N,M) satisfying

(1) the induced map ĩdi : Ext
i
R(N,M) → ExtiR(N,M) is the identity, and

(2) if f : N → N ′ and g : N ′ → N ′′ are R-module homomorphisms, then (̃g ◦ f)i = g̃i ◦ f̃i.

We construct the induced map and leave the verification of (1) and (2) to the reader. Given a projective
resolution

· · ·
d′2−→ P ′

1

d′1−→ P ′
0

d′0−→ N ′ → 0

for N ′ and a projective resolution

· · · d2−→ P1
d1−→ P0

d0−→ N → 0

forN , we define a chain map h∗ : P∗ → P ′
∗ inductively: First we define h0 : P0 → P ′

0 so that the diagram

P0 P ′
0

N N ′

d′0

h0

d0

f

commutes. Suppose h0, . . . , hi−1 are defined. We then define hi : Pi → P ′
i so that

Pi P ′
i

Pi−1 P ′
i−1

d′i

hi

di

hi−1

commutes. Each hi naturally induces a map hi∗ : HomR(P
′
i ,M) → HomR(Pi,M) given by precompo-

sition with hi. Similarly each di induces a map di∗ : HomR(Pi−1,M) → HomR(Pi,M), and we obtain a
diagram

HomR(P
′
i ,M) HomR(Pi,M)

HomR(P
′
i−1,M) HomR(Pi−1,M)

d′i∗

hi∗

hi−1∗

di∗
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that commutes. AsHomR(−,M) is left-exact, we have a diagramof commuting squares and exact columns:

...
...

HomR(P
′
1,M) HomR(P1,M)

HomR(P
′
0,M) HomR(P0,M)

d′1∗

h1∗

h0∗

d1∗

In particular we have a map

ExtiR(N
′,M) → ExtiR(N,M)

[x] 7→ hi∗(x)

where x ∈ ker d′i+1∗, [x] refers to an equivalence class of ker d′i+1∗/ im d′i∗, and hi∗(x) refers to an equiva-
lence class of ker di+1∗/ im di∗. Certainly if x ∈ ker d′i+1∗ then hi∗(x) ∈ ker di+1∗, since di+1∗ ◦ hi∗(x) =
hi+1∗ ◦ d′i+1∗(x) = hi∗(0) = 0. Furthermore this map is well defined since if [x] = [y] then x − y ∈
im d′i∗, and thus there exists some a ∈ HomR(P

′
i−1,M) such that d′i∗(a) = x − y. Then hi∗(d

′
i∗(a)) =

di∗(hi−1∗(a)), which implies hi∗(x)− h∗(y) ∈ im di∗. We conclude that hi∗(x) = hi∗(y).

Corollary 1. Let R be a Noetherian ring with I ≤ R an ideal, M be an R-module. For each k ∈ N, the
surjection R/Ik+1 ↠ R/Ik induces a map on the ith Ext group

ExtiR(R/Ik,M)
gk−→ ExtiR(R/Ik+1,M).

To obtain our ith local cohomology group we need the notion of a direct limit.

Definition 3. Let (Gn)n∈N be a sequence of groups and let gn : Gn → Gn+1 be a group homomorphism for
each n. Let G∞ be a group and for each n let un : Gn → G∞ be a group homomorphism. We say (G∞, (un))
is the direct limit of (Gn, gn) if

(1) for all n ∈ N,
Gn Gn+1

G∞

un+1un

gn

commutes, and

(2) for any group H and group homomorphisms hn : Gn → H satisfying commutativity with the gn as
above, we have a unique group homomorphism h∞ : G∞ → H so that

Gn H

G∞

un

hn

h∞

commutes for each n.

Remark 2. If we partially order finitely generated submodules of anR-moduleM by inclusion, the direct
limit lim−→i

Mi of the collection of all finitely generated submodules ofM is
⋃

iMi = M .
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Definition 4. Let R be a Noetherian ring with I ≤ R an ideal of R, and let M be an R-module. The
ith local cohomology of M with support in I , denoted H i

I(M), is the direct limit of (ExtiR(R/Ik,M), gk),
where

gk : ExtiR(R/Ik,M) → ExtiR(R/Ik+1,M)

is the map induced by the surjection R/Ik+1 ↠ R/Ik. We write H i
I(M) = lim−→k

ExtiR(R/Ik,M).

A simple consequence of the definition is that every local cohomology module H i
I(M) is I-torsion.

Proposition 2. Let R be a Noetherian ring with I ≤ R, and let M be any R-module. Every element of
H i

I(M) is annihilated by a power of I ([4]).

Proof. SinceH i
I(M) is defined to be the direct limit lim−→t

ExtiR(R/It,M), then every element ofH i
I(M) is

in the image of some ExtiR(R/It,M) for some t. But ExtiR(R/It,M) is killed by It, sinceHom(R/It, J)
is killed by It for any injective module J , and Remark 1 allows us to computeExtiR(R/It,M) via injective
resolutions forM .

For general i it can be difficult to understand the elements of H i
I(M). In the case i = 0 there is a

simple and useful characterization involving the I-torsion functor ΓI ([4]):

Proposition 3. ΓI(M) := H0
I (M) = {x ∈ M : Itx = 0 for some t ∈ N} =

⋃
tAnnM It, where

AnnM It = {x ∈ M : Itx = 0}.

Proof. We compute the direct limit of Ext0R(R/It,M). By definition Ext0R(R/It,M) is the kernel of

Hom(P0,M)
d∗1−→ Hom(P1,M) where · · · → P1

d1−→ P0 → R/It → 0 is a projective resolution of R/It.
By left exactness of HomR(−,M) we have

0 → HomR(R/It,M) → HomR(P0,M)
d1∗−−→ HomR(P1,M)

is exact and thus Ext0R(R/It,M) = ker d1∗ ∼= HomR(R/It,M). Since an R-module homomorphism
φ : R/It → M is determined by where it sends 1, then if φ(1) = m we know 0 = φ(i) = im for all
i ∈ It, som ∈ AnnM It. Likewise for eachm ∈ AnnM It wemay construct anR-module homomorphism
φ : R/It → M such that φ(1) = m, so we identify Hom(R/It,M) ∼= AnnM It. Thus for each t ∈ N the
induced map

Ext0R(R/It,M) → Ext0R(R/It+1,M)

is identified with the inclusion AnnM It ↪−→ AnnM It+1. It remains to show (
⋃

tAnnM It, (ut)t) is the
direct limit of AnnM It

ιt
↪−→ AnnM It+1, where for each t the map ut : AnnM It →

⋃
tAnnM It is given

by inclusion. The diagram
AnnM It AnnM It+1

⋃
tAnnM It

ut+1
ut

ιt

commutes for all t since all maps are inclusions. Furthermore if H is a group and for all t we have ht :
AnnM It → H commutes with the inclusion maps ιt, then the map h∞ :

⋃
tAnnM It → H ,m 7→ ht(m)

(where t is such thatm ∈ AnnM It) is the unique group homomorphism which makes

AnnM It H

⋃
tAnnM It

ut

ht

h∞
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commute. Indeed this homomorphism is well-defined since if m ∈ AnnM It1 ∩ AnnM It2 for t1 ≤ t2,
then ht1(m) = ht2(m), as the ht maps commute with inclusions. Hence H0

I (M) =
⋃

tAnnM It.

Remark 3. In the proof of Proposition 3we showed thatΓI(−) is equivalent to the functor lim−→t
HomR(R/It,−).

By Remark 1 we know that ExtiR(R/It,−) is the ith right derived functor of the (left-exact) functor
Hom(R/It,−). In this case, being a right derived functor commutes with direct limits, so H i

I(−) =
lim−→t

ExtiR(R/It,−) is actually the ith right derived functor of ΓI(−) = lim−→t
Hom(R/It,−) ([5]). This

equivalent characterization allows us to deduce facts about local cohomology from knowledge of ΓI .

2 Vanishing Theorems and Uniqueness

Let R be Noetherian and letM be an R-module. To every ideal I ≤ R we have just associated a sequence
of abelian groupsH i

I(M). It is natural to ask whether this sequence is uniquely encoded by I , or if distinct
ideals can yield the same local cohomology groups. It turns out that uniqueness holds up to radical:

Proposition 4 (Local cohomology is unique up to radical ([2])). Given ideals I, J of a Noetherian ring R,
√
I =

√
J =⇒ H i

I(M) ∼= H i
J(M).

for any R-module M .

Proof. Suppose that
√
I =

√
J . Then I ⊆

√
J and I finitely generated implies there exists some t ∈ N

such that It ⊆ J . Similarly there exists some s ∈ N such that Js ⊆ I . This means that for every element
of {Ik}k there exists some element of {J ℓ}ℓ with Ik ⊆ J ℓ and similarly for every element of {Jk}k there
exists some element of {Iℓ}ℓ with Jk ⊆ Iℓ. Sets which satisfy such a property are said to be cofinal with
respect to each other. Cofinality and Proposition 3 imply that ΓI(M) = ΓJ(M). Hence the right derived
functors of ΓI and ΓJ are equivalent, so by Remark 3 we know H i

I(M) ∼= H i
J(M) for all i.

Remark 4. The converse of Proposition 3 holds if the functors H i
I and H i

J are equivalent for all i ([2]).
That is, if H i

I(M) ∼= H i
J(M) for every R-moduleM and i ∈ N ∪ {0}, then

√
I =

√
J .

Since cohomology is used to measure obstructions, it is helpful to know when local cohomology is
certain to vanish. The following theorem guarantees that local cohomology vanishes for i > t whenever
I can be generated by t elements, thus giving a vanishing condition independent of the moduleM .

Proposition 5. Suppose I is generated by t elements. For every R-module M we have H i
I(M) = 0 for

all i > t.

Proof. As in [5], we proceed by induction on t. When t = 0 this means I = 0, so Γ0(M) = H0
0 (M) =

{x ∈ M : 0x = 0} = M . Hence Γ0 is the identity functor, so by our definition of local cohomology as
the right derived functor of Γ we conclude that H i

0(M) = 0 for all i > 0. When t = 1 we have that I is
principal, so we write I = (a) for a ̸= 0 and notice that It = (at) for all t. If a is not a zero divisor then
we have a short exact sequence of R-modules

0 → R
·at−→ R ↠ R/(at) → 0.

It is a standard fact of the theory of derived functors that short exact sequences induce long exact sequences
of cohomology ([7]), so the short exact sequence above induces a long exact sequence of Ext groups

· · · → Ext1R(R/(at),M) → Ext1R(R,M) → Ext1R(R,M) → Ext2R(R/(at),M) → Ext2R(R,M) → · · ·
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which is equivalent to

· · · → Ext1R(R/(at),M) → 0 → 0 → Ext2R(R/(at),M) → 0 → · · ·

due toR being a free (hence projective)R-module, which immediately impliesExtiR(R,M) = 0 for i > 0.
We see then that ExtiR(R/(at),M) = 0 for all i > 1 and t ∈ N, so necessarilyH i

(a)(M) = 0 for all i > 1.
If a is a zero-divisor of R the result still holds but the proof is not as immediate: By Theorem 2.2.16 in [5],
we have a natural equivalence of functors

ω : D(a)(−) = lim−→
n

HomR((a
n),−) ∼= (−)a

where Ma is the localization of M with respect to the multiplicative set {1, a, a2, . . . }, and ω maps f ∈
HomR((a

t),M) to f(at)
at ∈ Ma. Since localizations are exact, we see thatD(a)(−) = lim−→n

HomR((a
n),−)

is an exact functor, and thus the right derived functors RiD(a)(−) are trivial for i > 0. By Theorem 2.2.4
in [5], RiD(a)(−) ∼= H i+1

(a) (−), so we immediately obtain H i
(a)(M) = 0 for all i > 1 and R-modulesM .

Now suppose that t > 1 and the result is true for ideals generated by t elements or fewer. If I ≤ R is
generated by t+1 elements x1, . . . , xt+1, we consider the ideals a = (x1, . . . , xt) and b = (xt+1), so that
I = a⊕ b. Our inductive assumption lets us conclude that H i

a(M) = 0 for all i > t and that H i
b(M) = 0

for all i > 1. To complete the proof we need a way to express H i
I(M) in terms of H i

a(M) and H i
b(M).

This is done via a Mayer-Vietoris sequence.

Lemma 1 (Mayer-Vietoris for Local Cohomology). For each R-module M and ideals a, b ≤ R, there is a
long exact sequence of local cohomology

0 H0
a+b(M) H0

a (M)⊕H0
b (M) H0

a∩b(M)

H1
a+b(M) H1

a (M)⊕H1
b (M) H1

a∩b(M) → · · ·

See Theorem 3.2.3 of [5] for a proof. For all i > t + 1 we know that H i
a(M) = 0 and H i

b(M) = 0, so
exactness of the Mayer-Vietoris sequence yields an exact sequence

0 → H i−1
a∩b (M) → H i

I(M) → 0

for all i > t + 1, where we recall that I = a + b. Thus H i
I(M) ∼= H i−1

a∩b (M). Since
√
a ∩ b =

√
ab,

Proposition 3 tells us that H i
ab(M) ∼= H i

a∩b(M) for all i. Recall that a is generated by x1, . . . , xt and
that b is generated by xt+1, so ab is generated by the t elements x1xt+1, . . . , xtxt+1. By our inductive
hypothesis, we know that H i

ab(M) = 0 for all i > t, or equivalently H i−1
ab (M) = 0 for all i > t + 1. We

conclude that H i
I(M) = 0 for all i > t+ 1.

The main theorem of this section provides a vanishing condition based solely on the module M and
independent of the chosen support ideal I . The proof of the theorem requires several auxiliary results, the
first of which concerns vanishing of local cohomology when the module is annihilated by powers of the
support ideal. The second discusses the contrary case, whenM is I-torsion-free.

Lemma 2. If M is an I-torsion module, then H i
I(M) = 0 for all i > 0 [5].

Proof. IfM is I-torsion, we can always find an injective resolution J• ofM consisting of I-torsionmodules
([5], Corollary 2.1.6). If Ji is an injective I-torsion module, then the exact sequence

0 → I2 → R → R/I2 → 0
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yields an exact sequence

0 → HomR(R/I2, Ji) → HomR(R, Ji) → HomR(I
2, Ji) → 0.

Wenote thatHomR(I
2, Ji) = 0, since if f ∈ HomR(I

2, Ji) then for all i, j ∈ I we have f(ij) = if(j) = 0
as Ji is I-torsion. Therefore HomR(R/I2, Ji) ∼= HomR(R, Ji) ∼= Ji, so our chain complex

0 → HomR(R/I2, J0) → HomR(R/I2, J1) → · · ·

becomes

0 → J0 → J1 → · · ·

which is exact at all Ji for i > 0 by exactness of the original injective resolution. ThereforeExtiR(R/I2,M) =
0 for all i > 0. An inductive argument shows that HomR(R/It, Ji) ∼= Ji for all t > 2 as well, so that
ExtiR(R/It,M) = 0 for all t ≥ 2. In the direct limit we conclude H i

I(M) = 0 for i > 0.

Lemma 3. Let M be a finitely generated R-module. If M is I-torsion free, then I contains a non-zerodivisor
on M [5].

Proof. We show the contrapositive. Suppose I consists entirely of zero divisors ofM . Since the set of zero
divisors of M is equal to the union of the associated primes of M (where p ∈ AssR(M) if there exists
some nonzero x ∈ M such that AnnR(x) = p), we have I ⊆

⋃
p∈AssR(M) p. By the Prime Avoidance

Lemma we get I ≤ p for some p ∈ AssR(M), and since p = AnnR(x) for some x ∈ M , then I annihilates
x ∈ M . Therefore x ∈ ΓI(M) and we conclude thatM is not I-torsion free.

To prove Grothendieck’s VanishingTheoremwe need the key fact that flat base change commutes with
local cohomology:

Lemma 4. If R is Noetherian and S′ is a flat Noetherian R-algebra, then

S′ ⊗R H i
I(M) ∼= H i

I(S
′ ⊗R M) ∼= H i

IS′(S′ ⊗R M)

as S′-modules ([4]).

As localizations of a Noetherian ring R are R-flat and Noetherian, we obtain as a consequence of
Lemma 4 that if S is a multiplicatively closed subset of R, then

S−1(H i
I(M)) ∼= H i

S−1I(S
−1M)

as S−1R-modules.

2.1 Grothendieck’s Vanishing Theorem

Theorem 1 (Grothendieck’s Vanishing Theorem). Let R be Noetherian, I ≤ R, M an R-module. Let
dimR(M) be the Krull dimension of Supp(M) = {p ∈ Spec(R) : Mp ̸= 0}. Then H i

I(M) = 0 for all i >
dimR(M) ([3]).

Proof. It suffices to prove the theorem in the case whereM is finitely generated: this follows from the fact
thatM is a direct limit of its finitely generated submodules by Remark 2, that local cohomology commutes
with direct limits ([4]), and that the dimension of a submodule ofM cannot exceed the dimension ofM .

Since being zero is a local property of modules, it suffices to show that (H i
I(M))m = 0 for all max-

imal ideals m ∈ Spec(R), i > dimR(M). By Lemma 4 we know that localizations commute with local
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cohomology, and thus the problem reduces to showingH i
IRm

(Mm) = 0 for every maximal m ∈ Spec(R),
i > dimR(M). Fix m ∈ Spec(R). We claim that dimRm(Mm) ≤ dimR(M), so that it suffices to prove the
proposition in the case where (R,m) is a local ring. Indeed, if we can show that

SuppRm
(Mm) = {qRm : q ∈ Supp(M) and q ⊆ m},

then any chain of prime ideals in the support of Mm corresponds to a chain of prime ideals contained in
m in the support of M , and hence cannot be of length greater than a general chain of prime ideals in the
support ofM . To prove the equality above, we note that if q is a prime in R such that q ≤ m andMq ̸= 0,
then the extended ideal qRm ∈ Spec(Rm) is in the support ofMm, as

(Mm)qRm
∼= (M ⊗R Rm)⊗Rm (Rm)qRm

∼= M ⊗R (Rm ⊗Rm (Rm)qRm)
∼= M ⊗R (Rm)qRm .

But (Rm)qRm
∼= Rq via ( r

s
)

( r
′

s′ )
7→ rs′

r′s , since r′s ̸∈ q as both r′ ̸∈ q and s ̸∈ m ⊇ q. This means that

(Mm)qRm
∼= M ⊗R Rq

∼= Mq which is nonzero. On the other hand, if qRm is in the support of Mm, then
q is necessarily contained in m (for qRm to even be a prime ideal of Rm) and the same isomorphism above
yields Mq ̸= 0.

We have thus reduced to the local case. By convention if M = 0 then dimR(M) = −1, so certainly
H i

I(0) = 0 for all i > −1. On the other hand if I = R is the unit ideal then ΓI is the zero functor, for
ΓI(M) = ΓR(M) = {x ∈ M : Rx = 0} = 0. Since the higher local cohomology groups are right derived
functors of ΓI , they must be zero. It remains to prove the theorem whenM ̸= 0 and I < m properly.

Suppose dimR(M) = 0. For finitely generated modules we have Supp(M) = V (a) where a is the
ideal AnnR(M) = {r ∈ R : rm = 0 for somem ∈ M}, and thus dimR(M) = dim(Supp(M)) =
dim(R/a). We conclude that dim(R/AnnR M) = 0, and since R/AnnR M is Noetherian as a quotient
of a Noetherian ring, its dimension then forces it to be Artinian. Since every prime ideal is maximal and
R is local by assumption, some power of the maximal ideal mn = 0 = AnnR M , so every element of M
is annihilated by some power of m. As an immediate consequence we have that every element of M is
annihilated by a power of any proper ideal I < m, so M is I-torsion. By Proposition 2, H i

I(M) = 0 for
all i > 0 = dimR(M), completing the base case.

Now suppose the statement holds for all modules of dimension smaller than n. Since a short exact
sequence of R-modules induces a long exact sequence on local cohomology ([5]), we consider the long
exact sequence of local cohomology induced by the short exact sequence

0 → ΓI(M) ↪−→ M ↠ M/ΓI(M) → 0.

AsH i
I(ΓI(M)) = 0 for all i > 0 (since ΓI(M) is I-torsion by definition), thenH i

I(M) ∼= H i
I(M/ΓI(M))

for all i > 0. NowM/ΓI(M) is I-torsion free and has dimension at most the dimension ofM , so hereafter
we assumewithout loss of generality thatM is I-torsion free. Lemma 3 implies that there exists some r ∈ I
which is a non-zerodivisor onM . For i > n and every t ∈ N we consider the exact sequence

0 → M
·rt−→ M ↠ M/rtM → 0

which induces an exact sequenceH i−1
I (M/rtM) → H i

I(M) → H i
I(M). The second map in this sequence

is again just multiplication by rt, since the functorH i
I isR-linear as a consequence of being a right derived

functor of the R-linear functor ΓI . As r is a non-zerodivisor on M , we know that rt ̸∈
⋃

p∈AssR(M) p for
any t ∈ N, and since it is a fact in commutative algebra that minimal elements of Supp(M) belong to
Ass(M), we know rt ̸∈ p for some minimal p ∈ Supp(M). Then p ̸∈ Supp(M/rtM), since (M/rtM)p ∼=

9



Mp/r
tMp and rtMp

∼= Mp due to the fact that rt is invertible in Mp. This implies that dim(M/rtM)
is strictly less than dim(M), and therefore H i−1

I (M/rtM) = 0 for all i − 1 > n − 1 by the inductive
hypothesis. Hence for i > n and every t ∈ N we have

H i
I(M)

·rt
↪−→ H i

I(M)

is an injection. But H i
I(M) is I-torsion by Proposition 2, and since r ∈ I there must exist some t ∈ N for

which rt(H i
I(M)) = 0. Injectivity then forces H i

I(M) = 0.

3 Computing Examples: Polynomial Rings

Just as it was useful to know when local cohomology certainly vanishes, it is helpful to know when we
should expect some nonzero local cohomology, especially in the context of Proposition 5 which is con-
cerned with minimal generation of ideals. The following lemma gives a sufficient and necessary condition
for nonvanishing local cohomology.

Lemma 5. ([5]) Let a be an ideal of a Noetherian ring R generated by a1, . . . , an. Then Hn
a (R) ̸= 0 if and

only if there exists some k ∈ N such that, for every t ∈ N,

(a1, . . . , an)
t ̸⊆ Rat+k

1 + · · ·+Rat+k
n .

We use the preceding lemma to prove several facts about polynomial rings.

Example 1. Let R = k[x1, . . . , xn] be the polynomial ring in n variables over a field k, and let I =
(x1, . . . , xn) be the ideal of polynomials with zero constant term. By Proposition 5, we have that for any
R-moduleM and every i > n, H i

I(M) = 0. Notice that for all t ∈ N we have

(x1, . . . , xn)
t ̸⊆ Rxt+1

1 + · · ·+Rxt+1
n

as, for instance, xti ̸∈ (xt+1
1 , . . . , xt+1

n ) for any 1 ≤ i ≤ n. Lemma 5 applies with k = 1 to allow us to
conclude that it is not possible to generate I with fewer than n generators.

WhenR = k[x] and I = (x), Proposition 5 implies thatH i
(x)(M) = 0 for every i > 1 and k[x]-module

M . It is illustrative to compute H0
(x)(M) and H1

(x)(M) for general (finitely generated)M in this setting.

Example 2. ([1]) Let R = k[x], I = (x), andM a finitely generated R-module. By the structure theorem
for finitely generated modules over principal ideal domains, M ∼= k[x]n

⊕ℓ
i=1 k[x]/(f

ni
i ), where n, ℓ ∈

N ∪ {0}, fi is an irreducible polynomial in k[x], and ni ∈ N. Let ki be the largest nonnegative power of x
dividing fni

i . Then

H0
I (M) ∼=

ℓ⊕
i=1

k[x]/(xki)

H1
I (M) ∼=

n⊕
i=1

k[x, x−1]/k[x]

Proof. We first compute H0
I (M). As Ext commutes with finite direct sums in the second component,

and direct limits commute with direct sums ([1]), it is enough to compute H0
I (k[x]) and H0

I (k[x]/(f
ni
i )

separately. Since H0
I (k[x])

∼= ΓI(k[x]) and no nonzero elements of k[x] are annihilated by any power of
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(x), we obtainH0
I (k[x]) = 0 by Proposition 3. To computeH0

I (k[x]/(f
ni
i ) for fi irreducible and nonzero,

we consider the short exact sequence

0 → k[x]
·fni

i−−→ k[x] ↠ k[x]/(fni
i ) → 0

which induces a long exact sequence

0 → H0
I (k[x]/(f

ni
i )) → H1

I (k[x])
·fni

i−−→ H1
I (k[x]) → H1

I (k[x]/(f
ni
i )) → H2

I (k[x]) → · · ·

with the multiplication by fni
i map carrying over to local cohomology by virtue of H i

I being k[x]-linear,
as remarked in the proof of Theorem 1. For both the computation of H0

I (k[x]/(f
ni
i ) and the eventual

computation of H1
I (M) it is apparent we need to understand H1

I (k[x]). Take an injective resolution

0 → k[x] → k(x) → k(x)/k[x] → 0

where k(x) is the field of rational functions. Applying the exact functor ΓI yields an exact sequence

0 → Γ(x)(k(x)) → Γ(x)(k(x)/k[x]) → 0

since Γ(x)(k[x]) = 0 as k[x] is (x)-torsion free. Then Γ(x)(k(x)/k[x]) ∼= k[x, x−1]/k[x], as the only way
elements in k(x)/k[x] are annihilated by powers of (x) is if they are of the form f(x)

xn for some f(x) ∈ k[x]
and n ∈ N. Because H1

I (k[x])
∼= Γ(x)(k(x)/k[x]), we conclude that H1

(x)(k[x])
∼= k[x, x−1]/k[x].

Now H0
I (k[x]/(f

ni
i )) is isomorphic to the kernel of

k[x, x−1]/k[x]
·fni

i−−→ k[x, x−1]/k[x].

Expressing fni
i as xkig where ki ∈ N ∪ {0} and x ∤ g, we see that an element h(x) of H1

(x)(k[x])
∼=

k[x, x−1]/k[x] is in the kernel of ·fni
i only if it is some k[x] multiple of 1

xki
, and thus

H0
I (k[x]/f

ni
i ) ∼= k[x](

1

xki
)/k[x] ∼= k[x]/(xki).

This completes our calculation of H0
(x)(M).

It remains to compute H1
(x)(k[x]/(f

ni
i )). Since H2

(x)(k[x]) = 0, exactness of the long exact sequence

implies that H1
(x)(k[x]/(f

ni
i ) is the cokernel of H1

(x)(k[x])
·fni

i−−→ H1
(x)(k[x]). We claim that this map is

surjective, which holds if H1
(x)(k[x]) is a divisible k[x]-module. Factoring fni

i = xkig as before, we note
that multiplication by xki is certainly surjective, and it remains to show that multiplication by g is as
well. Since g is not divisible by x then either g ∈ k (in which case surjectivity is again trivial), or g is
of the form a0 + p(x) where a0 ∈ k×. As p(x) is nilpotent in H1

(x)(k[x]), the sum of p(x) and a0 must
be a unit in H1

(x)(k[x]), and multiplication by this unit is surjective. We conclude that coker(·fni
i ) =

H1
(x)(k[x]/(f

ni
i )) = 0, completing the case of H1

(x)(M).

4 Minimal Generation of Radicals

We conclude the exposition by briefly returning to the question posed in the introduction: given a ring R
and an ideal J , what is the least number of elements x1, . . . , xn of J whose radical

√
(x1, . . . , xn) gen-

erates J? This question has important roots in the theory of complete intersections in algebraic geometry,
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where one asks whether the vanishing ideal I(C) of a curve C in projective n space can be generated by
r elements, where r = codimPn C . In other words, given an algebraic variety C = V (f1, . . . , fk) where
each fi is a homogeneous polynomial in C[x0, . . . , xn] and C has dimension m in Pn, we wish to deter-
mine whether there exist n−m homogeneous polynomials in C[x0, . . . , xn] which generate every other
homogeneous polynomial that vanishes on C . Since Hilbert’s Nullstellensatz tells us that I(V (J)) =

√
J ,

it is enough to consider whether there exist n−m homogeneous polynomials whose radical generates the
vanishing ideal ([6]).

Definition 5. Let I ≤ R be an ideal. The arithmetic rank of I , denoted ara(I), is the least number of elements
of R required to generate an ideal J such that

√
J =

√
I .

Note that if b1, . . . , bn ∈ R with
√

(b1, . . . , bn) =
√
I , then for each bi there exists some ki such that

bkii ∈ I . Since
√
I =

√
(b1, . . . , bn) ⊆

√
(bk11 , . . . , bknn ) ⊆

√
I , we may equivalently define ara(I) as the

minimum number of elements of I whose radical ideal gives the radical of I .

Corollary 2 (Minimal Generation up to Radical). H i
I(M) = 0 for all i > ara(I) and all R-modulesM .

Proof. Let J be the ideal generated by the ara(I) elements such that
√
J =

√
I . Proposition 5 implies

H i
J(M) = 0 for all i > ara(I). Since

√
J =

√
I , Proposition 4 yields H i

I(M) = 0 for all i > ara(I).

In particular Corollary 2 applies to a classic problem in algebraic geometry which asks whether it
is possible for the ideal I = (x, y) ∩ (u, v) in R = k[x, y, u, v], which is generated by the four elements
xu, xv, yu, yv and generated up to radical by xu, yv, xv+yu, to be generated by fewer than three elements
up to radical. Appeals to properties of local cohomology such as Mayer-Vietoris reveal that H3

I (R) ̸= 0,
and hence the answer is no [1].
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