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Abstract

Originating from the German word “klasse” (class), both topological and algebraic K-theory operates
under the philosophy that studying certain isomorphism classes of objects over a space/ scheme/ ring/
category is a good way to study that space (/scheme/ ring / category). In the case of topological K-theory,
we’ll consider isomorphism classes of vector bundles over a space X, whereas in algebraic K-theory we’ll
look at finitely generated projective modules over R. The Serre-Swan theorem will allow us to reconcile
these stories on the level of K0. We’ll finish the talk with an algebraic description of K1pRq and K2pRq,
as well as Quillen’s “+” construction for defining higher algebraic K-groups.

1 Introduction

Philosophy of K-theory: “The universal invariant”. In algebraic topology we have functors from spaces
to groups which allow us to distinguish between spaces. Similar idea here: often easier to compute some
topological properties from the mapped rings than from the original spaces/ schemes/ categories.
Two main components to algebraic K-theory:

1. Classical: the Grothendieck group K0 of a category (algebra).

2. Higher algebraic K-theory (topological/ homological).

Slogan: Algebraic K-theory deals with linear algebra over general rings R instead of over fields. Associate
to R a sequence of abelian groups KipRq whose behavior resembles a “homology theory,” e.g. we have long
exact sequences of pairs and functoriality.

Algebraic K-theory has wide-reaching connections to many fields. For example:

1. The class group of a number field K (measures failure of unique factorization of ideals in the ring of
integers OK) is approximately K0pOKq (it’s actually K̃0pOKq).

2. “Whitehead torsion” in topology (measures obstructions to f : X Ñ Y a homotopy equivalence be-
tween CW complexes being a simple homotopy equivalence) is essentially an element in K1pZπ1pYqq.

3. Higher K-groups of fields and rings of integers are related to special values of L-functions.

2 K0

2.1 K0 of a top space

K-theory traces its origins to topological K-theory.
“Topological K-theory is the idea that the set of bundles that a space admits is a good invariant of the space.”
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Definition 2.1 (VBpXq). Let X be a paracompact space (every open cover has a locally finite refinement– i.e.
can find a refinement (more open sets, containment condition) such that each point in X has a neighborhood
Ux intersecting only finitely many guys in the refinement. Examples: compact spaces, Euclidean space. . . ).
The sets VBRpXq and VBCpXq are isomorphism classes of real/ complex vector bundles over X.

These form an abelian monoid under Whitney sum (pullback bundle under diagonal map δ : X Ñ X ˆ X,
fiberwise direct sum of fibers. i.e., we have E ˆ F Ñ X ˆ X the product of the bundles, then take the direct
sum E ‘ F :“ δ˚pE ˆ Fq). Under tensor product, these form a commutative semiring. So we can group
complete! (See next section.) Form KOpXq,KUpXq, identity is 1 “ rT 1s (trivial bundle).

Higher topological K groups are defined by taking suspensions:

Definition 2.2. K´npXq :“ KpΣnXq.

(Negative indices indicate that coboundary maps increase dimension.)

2.2 Group completion of a monoid

Definition 2.3 (Abelian monoid). An abelian monoid is a set M together with an associative, commutative
group operation ` and “additive identity” 0. (Group without inverses.)
A monoid map f : M Ñ N is a set map such that f p0q “ 0 and f pm ` m1q “ f pmq ` f pm1q.

Example 2.4. N0 “ t0, 1, 2, . . . u

Example 2.5. If A is an abelian group, any additively closed subset of A containing 0 is an abelian monoid.

Definition 2.6 (Group completion). Given an abelian monoid M, the group completion is an abelian group
M´1M (formally “adding in inverses”) together with a monoid map rs : M Ñ M´1M, universal in the sense
that, for every abelian group A and every monoid map α : M Ñ A, there exists a unique abelian group
homomorphism α̃ : M´1M Ñ A such that α̃prmsq “ αpmq for all m P M.

M M´1M

A

r s

α D! α̃

Example 2.7. The group completion of N0 is Z.

Prop 2.8. Every abelian monoid has a group completion.

Proof. Take the free abelian group FpMq on symbols rms for m P M, then factor out by the subgroup RpMq

generated by the relations rm ` ns ´ rms ´ rns. □

Definition 2.9 (K0pXq). The Grothendieck group K0pXq for X a paracompact top space is the group com-
pletion of VBpXq.

Example 2.10 (X “ ˚). If ˚ is a 1-point space, Kp˚q “ Z. Why? The iso classes of real vector bundles over
the point are all the trivial bundles Rk ˆ t˚u. Determined by dimension. So VBpXq – N0, and K0pXq “ Z.

Lemma 2.11 (Contravariance of K). The functor KpXq is contravariant in X: if f : X Ñ Y is continuous, the
induced bundles construction E Ñ f ˚E yields a function f ˚ : VBpYq Ñ VBpXq.

2



Corollary 2.12. The universal map X Ñ ˚ induces a ring hom from Z “ Kp˚q into KpXq. Sends n ą 0 to the
class of the trivial bundle T n “ Rn ˆ X over X. If X ‰ H, then any point of X yields a map ˚ Ñ X splitting the
universal map X Ñ ˚. So functoriality implies we get a map splitting ZÑ KpXq. So Z is a direct summand of
KpXq when X ‰ H!

Remark 2.13. By universality, if M Ñ N is a monoid map, the map M Ñ N Ñ N´1N extends uniquely to a
group homomorphism M´1M Ñ N´1N, so group completion is a functor Abelian Monoids Ñ Ab. (Turns
out this functor is left adjoint to the forgetful functor, so HomAb MonpM, Aq – HomAbpM´1M, Aq.)

Prop 2.14 (Characterization of the group completion). (a) Elements of M´1M are of the form rms ´ rns

for m, n P M.

(b) If m, n P M, then rms “ rns in M´1M ðñ m ` p “ n ` p for some p P M.

(c) The monoid map M ˆ M Ñ M´1M sending pm, nq ÞÑ rms ´ rns is surjective.

(d) ( ùñ M´1M is the quotient of M ˆ M by pm, nq „ pm ` p, n ` pq.)

Question: Does M inject into M´1M via m ÞÑ rms? Recall: rms “ rns in M´1M if and only if there exists
p P M such that m ` p “ n ` p. So if we can cancel p, then the answer is yes. If we can always cancel p we
call M a cancellation monoid. (N0)

Definition 2.15 (Semiring). An abelian monoid which also has an associative product which distributes
over `, and a 2-sided multiplicative identity 1 (so a ring (not nec. commutative) but without subtraction!

Remark 2.16. The group completion of a semiring is a ring.

Definition 2.17. Let X be a topological space. The set rX,Ns is the set of continuous maps X Ñ N. This is
a semiring under pointwise addition and multiplication. The group completion is rX,Zs.

Example 2.18 (Representation ring). Example from rep theory: Let G be a finite group, and let RepCpGq be
the set of finite-dimensional reps ρ : G Ñ GLnpCq up to isomorphism. This is an abelian monoid under ‘.
Maschke’s Theorem ùñ CG (group algebra) is semisimple and RepCpGq – Nr, with r “ # conjugacy
classes of G (have a bijection between irreps and conjugacy classes).

So the group completion RpGq of RepCpGq is isomorphic to Zr as an abelian group. We also have a semiring
structure on RepCpGq via tensor product. So RpGq is a commutative ring, the “representation ring” of G.

2.3 K0 of a ring

Let R be a ring.

Definition 2.19 (PpRq). Let PpRq be the set of isomorphism classes of f.g. projective R-mods, together with
‘ and 0. This forms an abelian monoid.

Definition 2.20 (Grothendieck group K0pRq). K0pRq is the group completion P´1P of PpRq. If R is commu-
tative, K0pRq is a commutative ring with 1 “ rRs, since PpRq is a commutative semiring with product bR.
(We know P bR Q – Q bR P and P bR R – P. If P,G are f.g. projective modules, so is P bR Q.)

Example 2.21 (Grothendieck group of fields, local rings, and PIDs). Let k be a field (or division ring= field
without commutativity).
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What’s Ppkq? F.g. projective k-modules are just finite-dim. vector spaces, and isomorphism classes of k-
vector spaces are determined by their dimension, so Ppkq – N0, and K0pkq “ Z.

Same argument shows that K0pRq “ Z for local rings R (f.g. projectives are free, so determined up to iso by
rank). Same argument shows that K0pRq “ Z for R a PID (f.g. projectives over PIDs are free of finite rank,
determined by rank).

Remark 2.22. Want to restrict to f.g. projectives because of the Eilenberg swindle: if R8 (free R-mod on
countably infinite basis) is to be included, then P ‘ R8 – R8 for P f.g. would yield rPs “ 0 for all f.g.
projective R-mods P, so K0pRq “ 0. Boring‼

Question: How to reconcile K0pRq with K0pXq?

Theorem 2.23 (Serre-Swan Theorem). Slogan: “projective modules over commutative rings are like vector
bundles on compact spaces.” Let X be a compact Hausdorff space, andCpXq the ring of continuous real (complex-
)-valued functions on X. The category of real (complex) vector bundles on X is equivalent to the category of
finitely generated projective modules over CpXq.

The actual correspondence: Have a functor Γ

Γ : VBCpXq Ñ ProjModpCpXqq

E ÞÑ ΓpX, Eq

where ΓpX, Eq is a CpXq-module of sections. Swan’s theorem says this functor is an equivalence of cate-
gories. (ΓpX, Eq is the space of global sections s : X Ñ E.)

2.4 Brief detour: connection with the Picard Group

Let R be a commutative ring.

Definition 2.24 (Rank). The rank of a f.g. R-module M at a prime p ď R is rkp M :“ dimkppqpM bR kppqq

(where kppq “ Rp{pRp). Since Mp{pMp – kppqrkppMq, rkppMq is the minimal number of generators of Mp.

Remark 2.25. If P is a fg projective R-mod, then rkpPq : p ÞÑ rkppPq is a continuous function from the
topological space SpecpRq (Zariski topology) to the discrete top space N Ď Z. (Why? Turns out: Pp – pRpqn

for some n ě 0 and there exists some s P Rzp such that Pp1 – pRp1qn for all p1 not containing s (so the
preimage of rank n is a union of Dpsq).)

Definition 2.26 (Constant ranks). Say that P has constant rank if n “ rkppPq is independent of p.

Example 2.27. If Spec R is topologically connected (for example, if R is an integral domain), then every
continuous map Spec R Ñ N is constant, so every fg projective R-mod has constant rank.

Definition 2.28 (Algebraic line bundle). An algebraic line bundle L over a comm ring R is a fg projective
R-mod of constant rank 1.

Turns out: tensor product of line bundles is a line bundle: pLbR Mqp – LpbRp Mp has rank 1 (rankmultiplies
over tensor products).

Definition 2.29 (Picard group). PicpRq is the set of isomorphism classes of algebraic line bundles over R.
The tensor product endows PicpRq with the structure of an abelian group, rRs is the identity, and inverses

4



are given by dual modules HomRpP,Rq: has rank 1 when P has rank 1, and f.g. / projective because P is. The
evaluation map

P bR P̌ eval
ÝÝÑ R

p b f ÞÑ f ppq

is an isomorphism since being an isomorphism is a local property: If p is a prime, then pL bR Ľqp – Lp bRp

Ľp
eval
ÝÝÑ Rp is an isomorphism since Lp – Rp being rank 1?

2.4.1 Determinant line bundle

Definition 2.30 (det P). Let detpPq “
Źn P where P is a projective module of constant rank n. (

Źn P “

P b ¨ ¨ ¨ b P{xm1 b ¨ ¨ ¨ b mn : mi “ m j for some i ‰ jy.) This is a line bundle since it’s projective, finitely
generated, and of constant rank 1. (

Źk P has constant rank
`n

k

˘

.)

Prop 2.31. det : K0pRq ↠ P0pRq group homomorphism. (Suffices to show, by universal property of K0,
detpP bR Qq – detpPq bR detpQq.) So Picard group is a quotient of the Grothendieck group!

3 Higher K-theory

Leads us to the question: how to define higher K-groups?

3.1 Whitehead group K1pRq

Let R be an associative ring with unit. Include

GLnpRq Ñ GLn`1pRq

g ÞÑ

ˆ

g 0
0 1

˙

Let GLpRq, take union of GL1pRq ãÝÑ GL2pRq ãÝÑ GL3pRq ãÝÑ ¨ ¨ ¨ .

Definition 3.1. K1pRq “ GLpRq{rGLpRq,GLpRqs (abelianizing GLpRq). By universal property of abelian-
ization, any homomorphism GLpRq Ñ A (with A abelian) factors through K1pRq.

Definition 3.2 (Steinberg module). Let n ě 3. The Steinberg module StnpRq of a ring R. Group defined by
generators xi jprq with i, j a pair of distinct integers bw 1 and n, and r P R subject to Steinberg relations

(a) xi jprqxi jpsq “ xi jpr ` sq.

(b) rxi jprq, xkℓpsqs “

$

’

&

’

%

1 j ‰ k, i ‰ ℓ

xiℓprsq j “ k, i ‰ ℓ psmashq

xk jp´srq j ‰ k, i “ ℓ

Note that these relations are satisfied by elementary matrices ei jprq in GLnpRq (this matrix has a 1 in every
diagonal spot, has an r in spot pi, jq (i ‰ j), 0 elsewhere).

Let EnpRq be the subgroup of GLnpRq generated by these elementary matrices. Turns out:

Prop 3.3. For n ě 3 and R commutative, EnpRq ⊴ GLnpRq.
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Lemma 3.4 (Whitehead’s Lemma). EpRq is the commutator subgroup of GLpRq. So K1pRq “ GLpRq{EpRq.

Since Steinberg relations are satisfied by the elementary matrices, we have a canonical surjection

ϕn : StnpRq↠ EnpRq.

We have an injection StnpRq ãÝÑ Stn`1pRq, can write StpRq “ limÑ StnpRq “
Ů

StnpRq{ „. By stabilizing
ϕn, we get a surjection ϕ : StpRq Ñ EpRq. Define K2pRq “ ker ϕ. This yields an exact sequence of groups

1 Ñ K2pRq Ñ StpRq
ϕ
ÝÑ GLpRq Ñ K1pRq Ñ 1.

Turns out: K2pRq “ ZpStpRqq.

3.2 Topological tie-up

We’ve partially answered the question: We defined K1pRq and K2pRq algebraically. What does this have to
do with topology? What does this have to do with K0?

Definition 3.5 (Classifying space). For a group G, construct a connected topological space BG whose π1 “

G and higher homotopy groups vanish. (H˚pG; Mq – H˚pBG; Mq for M a G-module, homology with local
coefficients).

Definition 3.6 (Quillen’s + construction). TakeG “ GLpRq. Obtain the space B GLpRq. Construct B GLpRq`,
a CW complex X which has a distinguished map B GLpRq Ñ B GLpRq` such that

(a) π1pB GLpRq`q – K1pRq (the abelianization ofGLpRq), and the naturalmap fromGLpRq “ π1pB GLpRqq

to π1pB GLpRq`q is surjective with kernel EpRq.

(b) H˚pB GLpRq; Mq
–
ÝÑ H˚pB GLpRq`; Mq for every K1pRq-module M.

We can then define

KnpRq :“ πnpB GLpRq`q.

This yields K1pRq,K2pRq as defined before! Would need to check it also gives K0pRq‼
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