From K to higher algebraic K-theory

November 9, 2025

Abstract

Originating from the German word “klasse” (class), both topological and algebraic K-theory operates
under the philosophy that studying certain isomorphism classes of objects over a space/ scheme/ ring/
category is a good way to study that space (/scheme/ ring / category). In the case of topological K-theory,
we’ll consider isomorphism classes of vector bundles over a space X, whereas in algebraic K-theory we’ll
look at finitely generated projective modules over R. The Serre-Swan theorem will allow us to reconcile
these stories on the level of K. We'll finish the talk with an algebraic description of K;(R) and K,(R),
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as well as Quillen’s “+” construction for defining higher algebraic K-groups.

1 Introduction

Philosophy of K-theory: “The universal invariant”. In algebraic topology we have functors from spaces
to groups which allow us to distinguish between spaces. Similar idea here: often easier to compute some
topological properties from the mapped rings than from the original spaces/ schemes/ categories.

Two main components to algebraic K-theory:

1. Classical: the Grothendieck group K of a category (algebra).
2. Higher algebraic K-theory (topological/ homological).

Slogan: Algebraic K-theory deals with linear algebra over general rings R instead of over fields. Associate

to R a sequence of abelian groups K;(R) whose behavior resembles a “homology theory,” e.g. we have long
exact sequences of pairs and functoriality.

Algebraic K-theory has wide-reaching connections to many fields. For example:

1. The class group of a number field K (measures failure of unique factorization of ideals in the ring of
integers O) is approximately Ky(Ok) (it’s actually Ko(Ok)).

2. “Whitehead torsion” in topology (measures obstructions to f : X — Y a homotopy equivalence be-
tween CW complexes being a simple homotopy equivalence) is essentially an element in K (Zn;(Y)).

3. Higher K-groups of fields and rings of integers are related to special values of L-functions.

2 K,

2.1 K, of a top space

K-theory traces its origins to topological K-theory.
“Topological K-theory is the idea that the set of bundles that a space admits is a good invariant of the space”



Definition 2.1 (VB(X)). Let X be a paracompact space (every open cover has a locally finite refinement- i.e.
can find a refinement (more open sets, containment condition) such that each point in X has a neighborhood
U, intersecting only finitely many guys in the refinement. Examples: compact spaces, Euclidean space...).
The sets VBg(X) and VB¢ (X) are isomorphism classes of real/ complex vector bundles over X.

These form an abelian monoid under Whitney sum (pullback bundle under diagonal map 6 : X — X x X,
fiberwise direct sum of fibers. i.e., we have E x F — X x X the product of the bundles, then take the direct
sum E @ F := §*(E x F)). Under tensor product, these form a commutative semiring. So we can group
complete! (See next section.) Form KO(X), KU(X), identity is 1 = [T'] (trivial bundle).

Higher topological K groups are defined by taking suspensions:
Definition 2.2. K™"(X) := K(¥"X).

(Negative indices indicate that coboundary maps increase dimension.)

2.2 Group completion of a monoid

Definition 2.3 (Abelian monoid). An abelian monoid is a set M together with an associative, commutative
group operation + and “additive identity” 0. (Group without inverses.)
A monoid map f : M — N is a set map such that f(0) = 0 and f(m + m') = f(m) + f(m').

Example 2.4. Ny = {0,1,2,...}
Example 2.5. If A is an abelian group, any additively closed subset of A containing 0 is an abelian monoid.

Definition 2.6 (Group completion). Given an abelian monoid M, the group completion is an abelian group

M~ M (formally “adding in inverses”) together with a monoid map [] : M — M~! M, universal in the sense
that, for every abelian group A and every monoid map @ : M — A, there exists a unique abelian group
homomorphism & : M~'M — A such that &([m]) = a(m) for all m € M.

Example 2.7. The group completion of Ny is Z.
Prop 2.8. Every abelian monoid has a group completion.

Proof. Take the free abelian group F (M) on symbols [m] for m € M, then factor out by the subgroup R(M)
generated by the relations [m + n| — [m] — [n]. i

Definition 2.9 (Ky(X)). The Grothendieck group Ko(X) for X a paracompact top space is the group com-
pletion of VB(X).

Example 2.10 (X = ). If = is a 1-point space, K(*) = Z. The iso classes of real vector bundles over
the point are all the trivial bundles R¥ x {#}. Determined by dimension. So VB(X) = Ny, and Ko(X) = Z.

Lemma 2.11 (Contravariance of K). The functor K(X) is contravariant in X: if f : X — Y is continuous, the
induced bundles construction E — f*E yields a function f* : VB(Y) — VB(X).



Corollary 2.12. The universal map X — = induces a ring hom from Z = K(x) into K(X). Sendsn > 0 to the
class of the trivial bundle T" = R" x X over X. If X # (J, then any point of X yields a map «+ — X splitting the
universal map X — =. So functoriality implies we get a map splitting Z — K(X). SoZ is a direct summand of
K(X) when X # (!

Remark 2.13. By universality, if M — N is a monoid map, the map M — N — N~!N extends uniquely to a
group homomorphism M~'M — N~!'N, so group completion is a functor Abelian Monoids — Ab. (

)

Prop 2.14 (Characterization of the group completion).  (a) Elements of M~'M are of the form [m] — [n]
form,ne M.

(b) Ifm,n€ M, then[m] = [n] inM~'M <= m+ p=n+ p forsomep e M.
(c) The monoid map M x M — M~'M sending (m,n) — [m] — [n] is surjective.
(d) (= M~'M is the quotient of M x M by (m,n) ~ (m + p,n+ p).)

Does M inject into M~'M via m > [m]? Recall: [m] = [n] in M~ M if and only if there exists
p € M such that m + p = n + p. So if we can cancel p, then the answer is yes. If we can always cancel p we
call M a cancellation monoid. (N)

Definition 2.15 (Semiring). An abelian monoid which also has an associative product which distributes
over +, and a 2-sided multiplicative identity 1 (so a ring (not nec. commutative) but without subtraction!

Remark 2.16. The group completion of a semiring is a ring.

Definition 2.17. Let X be a topological space. The set [X,N] is the set of continuous maps X — N. This is
a semiring under pointwise addition and multiplication. The group completion is [X, Z].

Example 2.18 (Representation ring). Example from rep theory: Let G be a finite group, and let Rep(G) be
the set of finite-dimensional reps p : G — GL,(C) up to isomorphism. This is an abelian monoid under @®.

Maschke’s Theorem == CG (group algebra) is semisimple and Reps(G) =~ N, with r = # conjugacy
classes of G (have a bijection between irreps and conjugacy classes).

So the group completion R(G) of Rep(G) is isomorphic to Z" as an abelian group. We also have a semiring
structure on Rep(G) via tensor product. So R(G) is a commutative ring, the “representation ring” of G.

2.3 Kjpofaring
Let R be a ring.

Definition 2.19 (P(R)). Let P(R) be the set of isomorphism classes of f.g. projective R-mods, together with
@ and 0. This forms an abelian monoid.

Definition 2.20 (Grothendieck group Ko(R)). Ko(R) is the group completion P~!P of P(R). If R is commu-
tative, Ko(R) is a commutative ring with 1 = [R], since P(R) is a commutative semiring with product ®g.
(We know PR Q =~ Q®g Pand P®g R = P.If P,G are f.g. projective modules, so is P ®g Q.)

Example 2.21 (Grothendieck group of fields, local rings, and PIDs). Let k be a field (or division ring= field
without commutativity).



What’s P(k)? F.g. projective k-modules are just finite-dim. vector spaces, and isomorphism classes of k-
vector spaces are determined by their dimension, so P(k) =~ Ny, and Ko(k) = Z.

Same argument shows that Ko(R) = Z for local rings R (f.g. projectives are free, so determined up to iso by
rank). Same argument shows that Ky(R) = Z for R a PID (f.g. projectives over PIDs are free of finite rank,
determined by rank).

Remark 2.22. Want to restrict to f.g. projectives because of the : if R® (free R-mod on
countably infinite basis) is to be included, then P ® R*® =~ R® for P f.g. would yield [P] = 0 for all f.g.
projective R-mods P, so Ko(R) = 0. Boring!!

Question: How to reconcile Ko(R) with Ko(X)?

Theorem 2.23 (Serre-Swan Theorem). Slogan: “projective modules over commutative rings are like vector
bundles on compact spaces.” Let X be a compact Hausdorff space, and C(X) the ring of continuous real (complex-
)-valued functions on X. The category of real (complex) vector bundles on X is equivalent to the category of
finitely generated projective modules over C(X).

The actual correspondence: Have a functor I

[': VB¢(X) — ProjMod(C(X))
E — [(X,E)

where ['(X, E) is a C(X)-module of . Swan’s theorem says this functor is an equivalence of cate-
gories. (I(X, E) is the space of global sections s : X — E.)
2.4 Brief detour: connection with the Picard Group

Let R be a commutative ring.

Definition 2.24 (Rank). The rank of a f.g. R-module M at a prime p < R is tk, M := dimy,) (M ®g k(p))
(where k(p) = Ry/pR,). Since M, /pM, = k(p)™»M) rk, (M) is the minimal number of generators of M,.

Remark 2.25. If P is a fg projective R-mod, then tk(P) : p — rky(P) is a continuous function from the
topological space Spec(R) (Zariski topology) to the discrete top space N < Z. ( Turns out: P, =~ (R,)"
for some n > 0 and there exists some s € R\p such that P,y =~ (R,)" for all p’ not containing s (so the
preimage of rank 7 is a union of D(s)).)

Definition 2.26 (Constant ranks). Say that P has constant rank if n = rk,(P) is independent of p.

Example 2.27. If SpecR is topologically connected (for example, if R is an integral domain), then every
continuous map Spec R — N is constant, so every fg projective R-mod has constant rank.

Definition 2.28 (Algebraic line bundle). An algebraic line bundle L over a comm ring R is a fg projective
R-mod of constant rank 1.

Turns out: tensor product of line bundles is a line bundle: (L&gr M), = L,®g, M, has rank 1 (rank multiplies
over tensor products).

Definition 2.29 (Picard group). Pic(R) is the set of isomorphism classes of algebraic line bundles over R.
The tensor product endows Pic(R) with the structure of an abelian group, [R] is the identity, and inverses



are given by dual modules Homg (P, R): has rank 1 when P has rank 1, and f.g. / projective because P is. The
evaluation map

eval

PRrP 5 R
PR f— f(p)

is an isomorphism since being an isomorphism is a local property: If p is a prime, then (L ®g L), = L, ®r,

y eval . . . . .
L, — R, is an isomorphism since L, =~ R, being rank 1?

2.4.1 Determinant line bundle

Definition 2.30 (det P). Let det(P) = /\" P where P is a projective module of constant rank n. (/\" P =
PR @P/m - - Q@m, : m; =m;for somei # j).) This is a line bundle since it’s projective, finitely
generated, and of constant rank 1. ( /\k P has constant rank (Z) )

Prop 2.31. det : Ko(R) - Po(R) group homomorphism. (Suffices to show, by universal property of Ky,
det(P ®g Q) = det(P) ®g det(Q).) So Picard group is a quotient of the Grothendieck group!

3 Higher K-theory

Leads us to the question: how to define higher K-groups?

3.1 Whitehead group K, (R)

Let R be an associative ring with unit. Include

GL,(R) — GL,+1(R)
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Let GL(R), take union of GL;(R) — GL3(R) — GL3(R) — - - -

Definition 3.1. K;(R) = GL(R)/[GL(R), GL(R)] (abelianizing GL(R)). By universal property of abelian-
ization, any homomorphism GL(R) — A (with A abelian) factors through K (R).

Definition 3.2 (Steinberg module). Let n > 3. The Steinberg module St,(R) of a ring R. Group defined by
generators x;;(r) with i, j a pair of distinct integers bw 1 and n, and r € R subject to Steinberg relations

@) xij(r)xij(s) = xi;;(r + 5).

| JEki#C
(b) [xij(r), xe(8)] = < xie(rs) Jj =k,i # € (smash)
Xy j(—s7) JFEki="¢C

Note that these relations are satisfied by elementary matrices ¢;;(r) in GL,(R) (this matrix has a 1 in every
diagonal spot, has an r in spot (i, j) (i # j), 0 elsewhere).

Let E,(R) be the subgroup of GL,(R) generated by these elementary matrices. Turns out:

Prop 3.3. Forn = 3 and R commutative, E,(R) < GL,(R).



Lemma 3.4 (Whitehead’s Lemma). E(R) is the commutator subgroup of GL(R). So K;(R) = GL(R)/E(R).
Since Steinberg relations are satisfied by the elementary matrices, we have a canonical surjection
&n : Sty(R) » E,(R).

We have an injection St,(R) — St,+1(R), can write St(R) = lim_, St,(R) = | |St,(R)/ ~. By stabilizing
én, we get a surjection ¢ : St(R) — E(R). Define K»(R) = ker ¢. This yields an exact sequence of groups

1 - K2(R) — St(R) > GL(R) — Ki(R) — 1.
Turns out: K»(R) = Z(St(R)).

3.2 Topological tie-up

We’ve partially answered the question: We defined K;(R) and K (R) algebraically. What does this have to
do with topology? What does this have to do with K¢?

Definition 3.5 (Classifying space). For a group G, construct a connected topological space BG whose 7 =
G and higher homotopy groups vanish. (H.(G; M) ~ H,(BG; M) for M a G-module, homology with local
coefficients).

Definition 3.6 (Quillen’s + construction). Take G = GL(R). Obtain the space B GL(R). Construct BGL(R)™,
a CW complex X which has a distinguished map BGL(R) — BGL(R)™ such that

(a) m1(BGL(R)") =~ K (R) (the abelianization of GL(R)), and the natural map from GL(R) = m;(BGL(R))
to 11 (BGL(R) ™) is surjective with kernel E(R).

(b) H«(BGL(R); M) => H,(BGL(R)*; M) for every K;(R)-module M.
We can then define
K,(R) := m,(BGL(R)™").

This yields K (R), K2 (R) as defined before! Would need to check it also gives Ko(R)!!
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